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Considering the time-varying nature of an industrial process, an adaptive monitoring method based on fast 
moving window principal component analysis (FMWPCA) was developed.  The proposed approach adapted 
the parameters of the monitoring model with the dissimilarities between the new and oldest data, rather than 
recursively downgrading and upgrading the parameters.  It was found to be more efficient than other    
approaches tackling similar problems.  When process faults are detected, isolating the faulty variables pro-
vides additional information to investigate the root causes of the faults.  Numerous data-driven approaches 
require the datasets of known faults, which may not exist for some industrial processes, in order to isolate the 
faulty variables.  For this type of approach, incorrect information would be provided when encountering a 
new fault that was not in the known event list.  The contribution plot is a popular tool to isolate faulty vari-
ables without a priori knowledge.  However, it is well known that this approach suffers from a smearing   
effect, which may lead to the incorrect identification of the faulty variables in the detected faults.  In the pre-
sented work, a contribution plot without the smearing effect was derived, and was named the 
self-contribution plot.  An industrial example, correctly isolating faulty variables and diagnosing the root 
causes of the faults for the compression process, was provided to demonstrate the effectiveness of the pro-
posed approach for industrial processes. 

Keywords: Fault detection and isolation, Principal component analysis, Contribution charts, Moving window 
algorithm 

1. INTRODUCTION 

Investigating the root causes of abnormal events is a 
crucial task for an industrial process.  In modern 
chemical processes, distributed control systems are 
equipped to regulate the processes, and the operating 
data are collected and stored in a historical database.  
However, information about process operations is hid-
den under the historical data.  Therefore, it is more 
practical to develop methods that detect and investigate 
the root causes of process faults based on data-driven 
approaches, rather than to use other methods based on 
rigorous process models or knowledge-based approaches.  
Since the measured variables are correlated for a 
chemical process, principal component analysis (PCA) 
is a popular tool to extract the features of the process 
data that are applied to monitor the process variations.  
In the last two decades, the PCA method has been 
modified to extract the different characteristics of 
processes, such as, multiway PCA(1) for monitoring 

batch processes, dynamic PCA(2) for extracting the 
autocorrelations of variables, multiscale PCA(3) incor-
porated with wavelet analysis to detect process changes 
over time and frequency domains, consensus PCA, and 
hierarchical PCA(4) applied to monitor a process with 
multiblock datasets(5). In addition, a model-based 
PCA(6) has been developed to monitor the residuals of a 
process model.  More recently, a statistics pattern 
analysis(7) was proposed, using a PCA model to moni-
tor the statistics calculated from the measured data, 
since the authors argued that variations of the calcu-
lated statistics are similar to the behavior of independ-
ent, identically distributed (i.i.d.) random variables for 
a batch process, rather than measured variables.     

To accommodate the time varying nature of an  
industrial process, Li et al.(8) proposed recursive PCA 
(RPCA) incorporated with rank-one modification and 
Lanczos tridiagonalization for sample-wise and 
block-wise updating of the principal components (PCs).  
They reported that the drawback of the rank-one modi-
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fication algorithm is that all the eigenpairs have to be 
calculated, although only a few PCs of the covariance 
matrix are needed, and that the Lanczos algorithm 
needs a re-orthogonalization procedure due to 
round-off errors when computing Lanczos vectors.  
Choi et al.(9) derived the recursive forms of the mean 
and covariance for updating the PCA model, in which a 
loading matrix is stored instead of a full covariance 
matrix for the next model update.  A singular value 
decomposition (SVD) was applied to calculate the  
eigenvalues and eigenvectors of the updated covariance 
in their approach.  He and Yang(10) decomposed the 
updated covariance into two subspaces; one is parallel 
to the original PC subspace, and another is orthogonal 
to it, and then applied QR decomposition to the    
orthogonal subspace(11). The SVD method is applied to 
the smaller matrix, which is composed of the upper 
triangular matrix of the QR decomposition and the  
eigenvalues of the previous covariance, and then the 
PC subspace of the updated covariance can be     
obtained.  The limitation of the approach is that the 
number of PCs must be a constant for the model updates.  
Elshenawy et al.(12) applied the subspace tracking meth-
ods of first-order perturbation analysis (FOP) and the 
data projection method (DPM) to update the PC sub-
space.  Although these algorithms have a low compu-
tation cost and are simple to implement online,    
Doukopoulos and Moustakides(13) pointed out that the   
orthonormal basis for the desired subspace is not the 
corresponding singular vectors, i.e., the subspace 
tracking methods do not provide the PC subspace of the 
updated covariance.     

Although RPCA accounts for the time-varying  
nature of processes by updating models with the newest 
data, it leads to a reduction in the speed of adaptation as 
the data size increases.  Choi et al.(9) incorporated 
variable forgetting factors into the model update pro-
cedure to discount the old data; however, the factors are 
difficult to determine without the process knowledge.  
The moving window algorithm is an alternative    
approach to exclude the oldest data when new data are 
available.  Qin(14) reported that the computational 
loading of the moving window algorithm is propor-
tional to the window size.  Wang et al.(15) incorporated 
the concept of recursive adaptation and proposed a fast 
moving window algorithm to adapt the PCA model for 
monitoring processes with a time-varying nature.  
Although the computational loading of the fast moving 
window PCA (FMWPCA) approach is independent of 
the window size, recursive adaptation needs to be per-
formed twice when new data are available.  Firstly, 
the oldest data are removed from the PCA model using 
a downgrading procedure, and then the new data are 
added into the model by performing an updating pro-
cedure.  In this paper, a sample-wise FMWPCA 

method was proposed, in which the means and the  
covariance matrix are adapted by the dissimilarities 
between the oldest and the new data, therefore, the 
adaption procedure only needs to be performed once.  
Since the PCA model is adapted sample-wisely under 
normal operating conditions (NOC), it can be assumed 
that the eigenvalues of the updated covariance will be 
close to the previous ones.  The inverse iteration(16) is 
particularly useful in searching for the eigenvalues and 
eigenvectors with near counterparts.  The advantages 
of applying the inverse iteration to search for the   
eigenpairs of the update covariance are as follows: (1) 
not all of the eigenpairs need to be calculated, (2) the 
re-orthogonalization procedure for the eigenvectors is 
not necessary, (3) singular vectors of the updated   
covariance are guaranteed to be found, and (4) the 
number of PCs can be adjusted during model updates.   

After a fault is detected, the faulty variables need 
to be isolated in order to diagnose the root causes of the 
fault.  Contribution plots are the most popular tool for 
identifying which variables are pushing the statistics 
out of their control limits.  Kourti and MacGregor(17) 
applied the contribution plots of quality variables and 
process variables to find faulty variables of a 
high-pressure low-density polyethylene reactor.  They 
remarked that the contribution plots may not reveal the 
assignable causes of abnormal events; however, the 
group of variables contributed to the detected events 
will be unveiled for further investigation.  The contri-
bution plots were also applied to diagnose industrial 
batch processes(18-20). Choi and Lee(21), and Qin et al.(5) 
decentralized a complex chemical process into several 
blocks; hierarchically investigating block and variable 
contributions to isolate faulty variables.  Since the 
monitored variables have been arranged into blocks 
according to the process knowledge, the fault isolation 
tasks are easier to perform than an investigation of all 
variables.  Apart from the contribution plots of PCA, 
Lee et al.(22) developed a modified independent com-
ponent analysis (ICA) procedure to reveal more useful 
information on higher-order statistics from the NOC 
data than PCA can.  The contribution plots of the 
modified ICA method were also provided to reveal the 
group of process variables responsible for the process 
faults.  Westerhuis et al.(23) introduced the confidence 
limits of the contribution plots to enhance the capability 
of identifying the behaviors of faulty variables depart-
ing from the NOC.  They reported that there must be a 
careful interpretation of the contribution plots, since the 
residuals of the PCA are smeared out over the other 
variables.  Yoon and MacGregor(24) comprehensively 
compared the model-based and data-driven approaches 
for fault detection and isolation, and summarized that 
the contribution plots provide for the easy isolation of 
simple faults, but that additional information about 
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operating the process is needed to isolate complex 
faults.    

Other than isolating faulty variables with contribu-
tion plots, fault isolation approaches have been con-
ducted based on different groups of operating data.  
Raich and Çinar(25, 26) built several PCA models using 
normal and abnormal process data.  The detected 
faults are diagnosed by comparing the statistical dis-
tances and angles of the new data with each group of 
known event data.  A similar idea was applied to the 
pattern-matching approach(27). Yoon and MacGregor(28) 
extracted residual parts of the PCA from known event 
data as fault signatures.  The detected faults are rec-
ognized by projecting the residuals of the abnormal 
event data onto the fault signatures.  Dunia and Qin(29) 
developed the reconstruction-based approach to isolate 
faulty variables from the subspaces of faults.  Their 
method has been applied to reconstruct the predictor 
data of faulty variables before performing a prediction 
for a soft sensor model(30).  Yue and Qin(31) combined 
the statistics Q and T 

2 to develop an index that is mini-
mized when isolating faulty variables; therefore, a more 
feasible solution could be found than that from the 
original approach(29).  The reconstruction-based con-
tribution(32) (RBC) approach has been derived, and it 
was reported that RBC will not suffer from the smear-
ing effect, as the contribution plots of the PCA are  
enduring.  In reality, the smearing effect of RBC can 
be observed when implementing the confidence inter-
vals of the RBC plots.  Chu et al.(33) used the support 
vector machine (SVM) as a classification tool to build 
decision boundaries among the data from different  
operating modes.  Bayesian classification was applied 
to cluster data into the denser regions, and faults were 
identified according to the posterior probabilities(34).  
However, this type of approach, which constructs fault 
isolation models from the known event data, will  
induce an incorrect result when encountering a new 
fault.    

In order to identify the faulty variables for a new 
process fault, He et al.(35) used k-means clustering to 
classify historical data into different groups.  The 
pairwise Fisher discriminant analysis (FDA) was then 
applied to the normal data and each class of faulty data 
to find fault directions that were used to generate con-
tribution plots for isolating faulty variables.  Since 
their approach is only concerned with the variable  
directions between the classes of normal and faulty 
data, different classes of faults may have the same 
faulty variables, when the faulty classes spread in the 
same directions at different locations.  Liu and 
Chen(36) used Bayesian classification to extract multiple 

operating regions from historical data.  A fault identi-
fication index was derived based on the dissimilarities 
between normal and abnormal cluster centers and  
covariances.  The faulty variables of new faults can be 
isolated by comparing the indices of the measured 
variables.  However, isolating faulty variables by 
comparing the dissimilarities between normal and  
abnormal classes is based on a restrictive assumption 
that the faulty data can be formed into groups.  In 
practice, operators  intervene in the processes when 
they are aware of abnormalities.  Process behavior is 
non-  stationary, and the operators try to bring it back 
to a normal state.  Liu and Chen(37) investigated the 
contribution plots of the local statistic T 

2 to identify the 
faulty variables in the early stage of a fault occurring 
for a multimode process.  The contribution plots used 
still suffered from the smearing effect.  Kariwalaa et 
al.(38) integrated the branch and bound (BAB) method 
with the missing variable approach of probabilistic 
PCA (PPCA) to  locate faulty variables.  The concept 
of the approach is similar to the reconstruction-based 
method(29-31), but the known event datasets are not 
needed.  Since the BAB method searches for faulty 
variables by minimizing the monitoring statistic of 
PPCA, it can be expected that the solutions of the 
faulty variables will be inconsistent when the fault is 
propagating or when the controllers try to bring the 
process back to NOC.  The unstable solutions of the 
BAB approach are detailed in the illustrative example.  
In the present work, a contribution plot without smear-
ing effect was derived.  In this approach, it is not nec-
essary to prepare the known event datasets, which may 
not exist for some industrial processes, and the 
time-consuming task of continuously optimizing the 
mixed-integer programming problem for every sam-
pling data until reaching a stable solution is also not 
required.    

The remainder of this paper is organized as fol-
lows.  Section 2 gives an overview of PCA and the 
contribution plots of statistics Q and T 

2.  The proposed 
approach of the FMWPCA algorithm and the 
self-contribution plots for isolating multiple sensor 
faults are detailed in Section 3.  In Section 4, an  
industrial process with a time-varying nature is utilized 
to demonstrate the effectiveness of the proposed   
approach, and the root causes of multiple sensor faults 
are diagnosed using the self-contribution plots.  Finally, 
conclusions are given. 

2. BASIC THEORY 

2.1. Principal Component Analysis 

Consider the data matrix  ×m nRX with m rows of 
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observations and n columns of variables.  Each col-
umn is normalized to zero mean and unit variance.  The 
covariance of the reference data can be estimated as: 

TTT PPPPXX
)(

1
S

~~~

1





m
.....................  (1) 

where  Λ  is a diagonal matrix with the first K terms of 
the significant eigenvalues, and P contains the respec-
tive eigenvectors.  The  Λ  and  P  are the residual 
eigenvalues and eigenvectors, respectively.  The data 
matrix X can be decomposed as: 

T T ˆ   X XPP XPP X E 
...................................  (2)  

with X̂  being the projection of the data matrix X onto 
the subspace formed by the first K eigenvectors, named 
the principal component (PC) subspace, and E being 
the remainder of X that is orthogonal to the subspace. 

Statistic Q is defined as a measure of the variations 
of the residual parts of data: 

   T
T T TQ     x x x x xPP x xCx 

...........  (3) 

where TC PP  . In addition, another measure for the 

variations of systematic parts of the PC subspace is the 

statistic T 2:  
2 1 T T T 1 TT    xPΛ P x xDx tΛ t ..................  (4)  

where  1 TD PΛ P  and t are the first K term scores.  
This is the Mahalanobis distance from the origin of the 
subspace to the projection of the data.  The confidence 
limits of Q and T2 can be found in reference 39.   

2.2. Contribution Plots of Statistics Q and T2 

When a fault is detected by any one of 
above-mentioned statistics, the contribution plots pro-
vide a preliminary tool to isolate the faulty variables 
without any prior knowledge of the fault.  From Equa-
tion 3, the contributions of Q can be written as: 

 Q c xC
...........................................................  (5) 

The confidence limit for each contribution of Q 
has been derived in references 5 and 23.  Hopkins et 
al.(40) suggested an equation to find the largest contri-
bution when the statistic T 

2 is out of its control limits:  

 0.5
T

c tΛ .......................................................  (6) 

The group of variables projected onto the loading 
with the largest contribution should be further investi-

gated.  Since the suggested method does not pinpoint 
the faulty variables, it is difficult to be applied in prac-
tice.  Nomikos(18) rewrote Eq. 4 as the following equa-
tion: 
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which pj, i is an element of P.  The jth variable contri- 

buted to T2 is defined as           . Since the 

contributions may lead to negative values and will not  

follow a predefined distribution under NOC, the confi-
dence limit cannot be derived directly.  Westerhuis et 
al.(23) discussed the procedure to determine the upper 
control limit for the contributions.  Qin et al.(5) derived 
the variable contributions to T 

2 as xD0.5, and also pro-
vided the confidence limits of the contributions.  
However, since the contributions of the statistics are 
transformed from the process variables through a  
matrix multiplication, the faulty variables may smear 
out over the other variables, which will mislead a  
diagnosis of the correct root causes of the faults(5, 23, 32).     

3. PROPOSED APPROACH 

In this paper, considering the time-varying nature 
of an industrial process, a fast moving window algo-
rithm was derived to adapt the PCA model with the 
capability of describing the process behavior.  It 
should be noted that the monitoring model was adapted 
only when new data were under NOC; therefore, PCA 
would not be misled by blindly updating.  Since the 
smearing effect of the contribution plots corrupts the 
resolution for fault isolation, self-contribution plots 
with the corresponding confidence limits were derived.      

3.1. Fast Moving Window PCA 

Given a dataset with m measurements, in which 
the number of variables is n, the sample matrix is 
 ×m nRW .  The mean and the standard deviation of 
each variable are as follows:  
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where W  is a row vector, in which iW  is the ith ele-
ment for the mean of the variable, and  is a diagonal 
matrix of the standard deviations where i is the ith  
diagonal element for the standard deviation of the vari-
able.  The covariance matrix (Σ) can be derived from 
the above equations: 
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Where 1 is a column vector, in which all elements 
are one.  Once the new observations are available and 
the oldest ones are discarded, the adaptive means and 
standard deviations can be written as: 
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Where the notations with a superscript asterisk are 
the adaptive quantities, and the subscripts m+1 and 1 
stand for the new and the oldest data.  It can be   
observed that the means and standard deviations are 
adapted based on the original quantities and the dis-
similarities between the new and the oldest data.  
Similarly, the adaptive covariance can be derived based 
on the same concept: 
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Since the PCA model is updated only when the 
new data are under NOC, the eigenpairs of the adapted 
covariance would not dramatically change from the 
previous ones.  The inverse iteration(16) is suitable to 
search for the updated PC subspace starting from the 
previous one.  The computational loading for model 
updating is independent on the window size; in addi-
tion, the model parameters are adapted based on the 
original quantities with the dissimilarities of the new 
and the oldest data.  It is more efficient than the 
methods(10, 15) that need to recursively downdate and 
update the model parameters. 

3.2. Self-Contribution Plots 

The smearing effect of the contribution plots is due 
to the fault magnitude propagating from the faulty 
variables to the other ones by the matrix multiplication 
that converts the measured data into contributions.  
Therefore, it is intuitive to decompose the matrix into 
diagonal and off-diagonal ones to eliminate the smear-
ing effect.  Taking the contributions of Q as the exam-
ple, Equation 5 can be rewritten as the following equa-
tion:  

  Q d d  c xC x C C
................................... (12) 

Where Cd is the diagonal matrix of C, and the 
self-contributions can be defined as xCd.  The (1-) 
confidence intervals for the ith self-contribution can be 
established by the following equation(41): 

   0 5T
2CI

.

i / i d iz cov     ξ xC ξ
................... (13) 

in which  2/z  is the corresponding standard normal 

deviate, and  iξ  is a row vector in which the ith element 
is one and the others are zero. The ith self-contribution 
is normalized using one side of its confidence intervals 
for isolating faulty variables, using the following equa-
tion: 
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in which the unit variance for each variable is used.  
Therefore, the contribution plots without smearing  
effects are degenerated to univariate statistical process 
control (SPC) charts.  In order to suppress Type I error 
probability for the SPC tests, the significance level  is 
modified as the following value(42): 

  11 1
n

'   
........................................... (15) 

The same result can be derived if the T 
2 contribu-

tions proposed by Qin et al.5 are used.  Since the PCA 
model monitors the variable correlations and data dis-
tributions, the classical contribution plots simultane-
ously inherit two effects, which are the changes of cor-
relations and the shifts from NOC.  When the correla-
tion effect, also known as the smearing effect, is   
removed from the contribution plots, the faulty vari-
ables are easier to isolate.    

4. INDUSTRIAL APPLICATION 

The compression process was a 4-stage centrifugal 
compressor, equipped with an intercooler between 
stages to cool down the compressed air, as Figure 1 
shows.  A detailed description of the process can be 
found in a previous study (34) . The measured variables 
are listed in Table 1.  In the previous study, it was sug-
gested that monitoring the process-insight-based vari-
ables is more efficient for isolating faulty variables than 
is monitoring the measured variables.  Therefore, the 
compression efficiency of each stage and the heat  
exchange efficiency of each intercooler were monitored 
in this study.  The compression efficiency of the ith 
stage can be calculated from Pin, i, Pout, i, Tin, i, and Tout, i, 

 T T 1* * *m   
W W W W σ
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as listed in Table 1, and the heat exchange efficiency of 
the ith cooler can be evaluated using Fa, Tin, i+1, Tout, i, Fc, 
Tc, and Tc, i.  PCA was applied to the training dataset, 
in which seven monitored variables were calculated 
from the measured data for five days, and three PCs 

were retained by cross-validation, which captured 
about 87% of the total variance.  The process was 
monitored using FMWPCA with a five-day window 
size.  The fault detection result is shown in Fig.2, in 
which the abnormal events were detected after ap-

Table 1 Measured variables for the compression process 

Measured variable Description 
Fa Feed flow rate of air 
Fc Feed flow rate of cooling water 

Pin, i Inlet pressure for the ith compression stage, i = 1…4 
Pout, i Outlet pressure for the ith compression stage, i = 1…4 
Tin, i Inlet temperature for the ith compression stage, i = 1…4 
Tout, i Outlet temperature for the ith compression stage, i = 1…4 

Tc Inlet temperature of the cooling water 
Tc, i Outlet temperature of the ith intercooler, i = 1…3 

 

 
Fig.1. Air compression process flow diagram. 

 

10-2

10-1

100

101

102

103

0 1 2 3 4 5 6 7 8 9 10
10-1

100

101

102

103

Q

 

T
2

Day  
Fig.2. Process monitoring using FMWPCA. 



70 Isolating Multiple Sensor Faults Based on Self-Contribution Plots with Adaptive Monitoring 

proximately the sixth day. 
The self-contributions were normalized with the 

99% confidence limits for fault isolation, as shown in 
Fig.3.  It shows that the faulty variables were the heat 
exchange efficiencies of the first and the second inter-
coolers shown in Fig.3(a), as well as the compression 
efficiency of the second stage shown in Fig.3(b).  The 
operator log was investigated to find the root causes 
that induced the faulty variables.  There were two 
cells in the cooling tower for storing the returning wa-
ter from the intercoolers.  Each cell was equipped with 
a fan to reduce the temperature of the returned water.  
It was reported that one of the cooling fans had failed at 
10 AM on the sixth day.  Therefore, the temperature of 
the cooling water was higher due to the failure of the 
equipment.  Figure 4(a) shows the cold side tempera-
ture differences of the intercoolers, which revealed that 
the heat exchange efficiencies of the first and the sec-
ond intercoolers declined when the temperature of the 
cooling water increased.  Since the cold side tempera-
ture difference of the third intercooler was higher than 
the other ones in normal operating conditions, a slight 
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Fig.3.  Fault isolation using normalized self-contribution 
plots: (a) for the heat exchange efficiencies of the inter-
coolers and (b) for the compression efficiencies of the 
stages. 

temperature increase of the cooling water would not 
affect the heat exchange capability of the third inter-
cooler.  Therefore, the heat exchange efficiency of the 
third intercooler was not reported as a faulty variable.  
In the operator log, it was also reported that one of the 
cells in the cooling tower was scheduled for cleaning 
for four hours, starting at 10 AM on the eighth day; 
consequently, the supply of the cooling water would be 
less during this time frame.  Fig.4(b) shows the feed 
flow rate of the cooling water (Fc) declined at around 
8.5days, and in the mean time, the temperature of the 
cooling water (Tc) dramatically increased, as Fig.4(b) 
shows.  From Fig.4(a), the cold side temperature dif-
ference of the first intercooler significantly decreased at 
around 8.5days.  This  decrease was not due to the 
heat exchange efficiency of the intercooler being im-
proved immediately.  It was more reasonable to as-
sume that either the measured data of the cooling water 
temperature was higher than the process values, or that 
the measurement of the inlet temperature for the second 
compression stage was too low.  

From the operator log, there was no further infor-
mation about the abnormality of the second compres-
sion stage.  Figure 5 shows the compression effi-
ciency, temperature and pressure differences of the 
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Fig.4.  Investigating the root causes of the intercooler 
heat exchange deficiency. 
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second stage.  From the operators’ experience, the 
compression efficiencies were never higher than 0.9 for 
any compression stage.  It is an isentropic process 
when the compression efficiency is equal to one.  
Fig.5 indicates that the compression efficiency was 
higher than 0.9, and was dominated by the temperature 
difference during the period that the abnormal event 
was reported.  Since the compression efficiency is 
inversely proportional to the temperature difference, it 
could be concluded that the temperature differences 
from the measurements were too low during the period.  
Therefore, the extremely high efficiency of the second 
compression stage was due to either the measurements 
of the inlet temperature being higher than the process 
values, or the measured data of the outlet temperature 
being too low.  If the measured inlet temperature were 
too high, it would conflict with one of the previous 
conclusions that the first intercooler heat exchange ef-
ficiency sharply increases due to the inlet temperature 
of the second compression stage being too low.  
Therefore, it was suggested that the temperature sen-
sors for the compression process needed to be cali-
brated, or that, at least, the sensors of the cooling water 
temperature and the outlet temperature of the second 
compression stage were questionable. 
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Fig.5. Investigating the root causes for the abnormalities 
of the second compression stage. 
 

5. CONCLUSIONS 

In this paper, a fast moving window method was 
presented to develop a PCA model that could cope with 
the time-varying nature of industrial processes.  The 
proposed method adapted the model parameters with 
the dissimilarities between the oldest and the new data, 
which outperformed the original approaches(10, 15) that 
update the PCA model with recursively downgrading 
and upgrading procedures.  Since data-driven ap-
proaches construct a monitoring model with process 
data under NOC, the probability of Type II errors will 

be increased if the monitoring model is corrupted with 
data under anomalous process behaviors.  Therefore, 
the proposed approach updated the monitoring model 
only when both statistics Q and T 

2 of the new data 
were under the corresponding control limits, in order to 
prevent the model from being misled by faulty data.  
In addition, the presented work developed a contribu-
tion plot without the smearing effect for isolating faulty 
variables, and named it the self-contribution plot; es-
sentially, it degrades the plot to an SPC chart.  How-
ever, the self-contribution plots were shown to have the 
capability of isolating multiple sensor faults without 
predefined faulty datasets, and the fault isolation per-
formance of the proposed method outperformed the 
data-driven approaches in literature.  In the quadru-
ple-tank laboratory process example, it was demon-
strated that the RBC approach failed to isolate a single 
sensor fault, whereas the proposed approach precisely 
located the faulty variable.  In the TE process exam-
ple, the fault isolation results using the proposed   
approach were more reasonable than the solutions 
found using the BAB method.  The multiple sensor 
faults of an industrial process were successfully identi-
fied, and the root causes of the faults were diagnosed 
by referring to the operator logs and experiences.  The 
results showed that the proposed approach was suitable 
for application in industrial processes due to its effec-
tiveness and simplicity.  The limitation of the pro-
posed fault isolation method is that the faulty variables 
cannot be recognized when the process fault only 
comes from the variable correlation changes; however, 
the variations of each variable are still within the cor-
responding confidence intervals.  This limitation will 
be resolved in future work.  

NOMENCLATURE 

C= a matrix converting the measured data into Q con-
tributions 

Cd = diagonal matrix of C 

 Qc
= Q contributions of the test data 

 ,Q ic = normalized self-contribution plot for the ith 
variable 

 Tc
= T 2  contributions of the test data 

CIi = confidence intervals for the ith self-contribution 
plot 

D = a matrix converting the measured data into T 2  
contributions 

E = residual parts of the training data 
K =  number of principal components expanding the 

PC subspace 
m = number of observations in the training dataset 
n = number of variables 
P = loading matrix of the PC subspace 
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P  = loading matrix of the residual subspace 
Q = statistic Q of PCA 
S = covariance matrix of the training data 
T2 = statistic T2 of PCA 
t = PC scores of the test data 
W = measured data for the training dataset 
 W  = mean vector of the training data 

 *
W = adaptive mean vector 
Wi = measured data of the ith variable 

 iw  = mean of the ith variable 

 *
iw  = adaptive mean of the ith variable 

X = normalized training data  

 X̂  = systemic parts of the training data 
x = normalized test data 

 x  = systemic parts of the test data 

 2/z = the standard normal deviate with the (1-) con-
fidence limits 

Greek Letters 
 = significance level for statistic testing 

 '  = modified significance level for statistic testing 

 Λ  = diagonal matrix of the significant eigenvalues 

 Λ  = diagonal matrix of the residual eigenvalues 
Σ  = covariance matrix of the training data 

 *Σ  = adaptive covariance matrix 
σ  = diagonal matrix of the standard deviations 

 *σ  = adaptive matrix of the standard deviations 

 i  = standard deviation of the ith variable 

 *
i  = adaptive standard deviation of the ith variable 

 iξ  = a column vector in which the ith element is one 
and the others are zero 

REFERENCES 

1. P. Nomikos and J. F. MacGregor: “Monitoring 
Batch Processes using Multiway Principal Com-
ponent Analysis”; AIChE J., 1994, vol. 40, p. 1361. 

2. Ku, W., Storer, R. H., and C. Georgakis: “Distur-
bance Detection and Isolation by Dynamic Princi-
pal Component Analysis”; Chem Intell Lab Syst. , 
1995, vol.30, p. 179. 

3. B. R. Bakshi: “Multiscale PCA with Application to 
Multivariate Statistical Process Monitoring”; 
AIChE J. ,1998, vol.44, p. 1596. 

4. S.Wold, N. Kettaneh, and K. Tjessem: “Hierarchi-
cal Multiblock PLS and PC Models for Easier 
Model Interpretation and as an Alternative to Vari-
able  Selection”; J. Chemom., 1996, vol.10, p. 
463. 

5. J. S. Qin, S. Valle, and M. J. Piovoso: “On Unifying 
Multiblock Analysis with Application to Decen-
tralized Process Monitoring”; J. Chemom., 2001, 
vol.15, p. 715. 

6. Y. Rotem, A. Wachs, and D. R. Lewin: “Ethylene 
Compressor Monitoring Using Model-Based 
PCA”; AIChE J., 2000, vol.46, p. 1825. 

7. Q. P. He and J. Wang: Statistics Pattern Analysis: 
“A New Process Monitoring Framework and its   
Application to Semiconductor Batch Processes”; 
AIChE J. , 2011, vol.57, p. 107. 

8. W. Li, H. Yue, S. Valle-Cervantes and S. J. Qin: 
“Recursive PCA for Adaptive Process Monitor-
ing”; J Proc. Cont., 2000, vol.10, p. 471. 

9. S. W. Choi, E. B. Martin, A. J. Morris and I. B. Lee: 
“Adaptive Multivariate Statistical Process Control 
for Monitoring Time-Varying Processes”; Ind. Eng. 
Chem. Res. , 2006, vol. 45, p. 3108. 

10. X. B. He and Y. P. Yang: “Variable MWPCA for 
Adaptive Process Monitoring”; Ind. Eng. Chem. 
Res. , 2008, vol.47, p. 419. 

11. L. Hoegaerts, L. De Lathauwer, I. Goethals, J. A. K. 
Suykens, J. Vandewalle and B. De Moor: “Effi-
ciently Updating and Tracking the Dominant Ker-
nel Principal Components”; Neural Networks,  
2007, vol.20, p. 220. 

12. L. M. Elshenawy, S. Yin, a. S. Naik and S. X. Ding: 
“Efficient Recursive Principal Component Analysis 
Algorithms for Process Monitoring”; Ind. Eng. 
Chem. Res., 2010, vol. 49, p. 252. 

13. X. G. Doukopoulos and G. V. Moustakides: “Fast 
and Stable Subspace Tracking”; IEEE Trans. Signal 
Process., 2008, vol. 56, p. 1452. 

14. S. J. Qin: “Recursive PLS Algorithms for Adaptive 
Data Modeling”; Comp. Chem. Eng., 1998, vol.22, 
p. 503. 

15. X. Wang, U. Kruger and G. W. Irwin: “Process 
Monitoring Approach Using Fast Moving Win-
dow”; PCA. Ind. Eng. Chem. Res. , 2005, vol.44, 
p. 5691. 

16. G. H. Golub and C. F. Van Loan: Matrix Computa-
tions, Johns Hopkins University Press, Baltimore, 
Maryland, 1996. 

17. T. Kourti and J. F. MacGregor: “Multivariate SPC 
Methods for Process and Product Monitoring”; J. 
Qual. Technol. , 1996, vol.28, p. 409. 

18. P. Nomikos: “Detection and Diagnosis of Abnormal 
Batch Operations Based on Multi-way Principal 
Component Analysis”; ISA Trans., 1996, vol.35, p. 
259. 

19. T. Kourti, P. Nomikos and J. F. MacGregor: 
“Analysis, Monitoring and Fault Diagnosis of 
Batch Processes Using Multiblock and Multiway 
PLS”; J. Proc. Cont. 5, 1995, p. 277. 

20. T. Kourti, J. Lee and J. F. MacGregor: “Experiences 



73 Ding-Sou Chen, Ming-Wei Lee and Jialin Liu 

with Industrial Applications of Projection Methods 
for Multivariate Statistical Process Control”; Com-
put. Chem. Eng. , 1996, vol.20, p. S745. 

21. S. W. Choi and I. B. Lee: “Multiblock PLS-based 
Localized Process Diagnosis”; J Proc. Cont. 15, 
2005, p. 295. 

22. J. M. Lee, S. J. Qin and I. B. Lee: “Fault Detection 
and Diagnosis Based on Modified Independent 
Component Analysis”; AIChE J., 2006, vol.52, p. 
3501. 

23. J. A. Westerhuis, S. P. Gurden and A. K. Smilde: 
“Generalized Contribution Plots in Multivariate 
Statistical Process Monitoring”; Chemom. Intell. 
Lab. Syst. , 2000, vol.51, p. 95. 

24. S. Yoon and J. F. MacGregor: “Statistical and 
Causal Model-Based Approaches to Fault Detec-
tion and Isolation”; AIChE J., 2000, vol.46, p. 
1813. 

25. A. Raich and A. Çinar: “Statistical Process Moni-
toring and Disturbance Diagnosis in Multivariable 
Continuous Processes”; AIChE J., 1996, vol.42, p. 
995. 

26. A. Raich and A. Çinar: “Diagnosis of Process Dis-
turbances by Statistical Distance and Angle Meas-
ure”; Comput. Chem. Eng., 1997, vol.6, p. 661. 

27. M. C. Johannesmeyer, A. Singhal and D. E. Seborg: 
“Pattern Matching in Historical Data”; AIChE J., 
2002, vol.48, p. 2022. 

28. S. Yoon and J. F. MacGregor: “Fault Diagnosis with 
Multivariate Statistical Models Part I: Using Steady 
State Fault Signatures”; J Proc. Cont. 11, 2001, p. 
387. 

29. R. Dunia and S. J. Qin: “Subspace Approach to 
Multidimensional Fault Identification and Recon-
struction”; AIChE J., 1998, vol.44, p. 1813. 

30. S. J. Qin, H. Yue and R. Dunia: “Self-Validating  
Inferential Sensors with Application to Air Emis-
sion Monitoring”; Ind. Eng. Chem. Res. 36, 1997, 
p. 1675. 

31. H. H. Yue and S. J. Qin: “Reconstruction-Based 

Fault Identification Using a Combined Index”; Ind. 
Eng. Chem. Res., 2001, vol. 40, p. 4403. 

32. C. F. Alcala and S. J. Qin: “Reconstruction-based 
Contribution for Process Monitoring”; Automatica, 
2009, vol.45, p. 1593. 

33. Y. H. Chu, S. J. Qin and C. Han: “Fault Detection 
and Operation Mode Identification Based on Pat-
tern Classification with Variable Selection”; Ind. 
Eng. Chem. Res., 2004, vol.43, p. 1701. 

34. J. Liu: “Process Monitoring Using Bayesian Classi-
fication on PCA Subspace”; Ind. Eng. Chem. Res., 
2004, vol. 43, p. 7815. 

35. Q. P. He, S. J. Qin and J. A. Wang: “New Fault  
Diagnosis Method Using Fault Directions in Fisher 
Discriminant Analysis”; AIChE J. , 2005, vol.51, p. 
555. 

36. J. Liu and D. S. Chen: “Fault Detection and Identi-
fication Using Modified Bayesian Classification on 
PCA Subspace”; Ind. Eng. Chem. Res., 2009, vol.48, 
p. 3059. 

37. J. Liu and D. S. Chen: “Nonstationary Fault Detec-
tion and Diagnosis for Multimode Processes”; 
AIChE J., 2010, vol.56, p. 207. 

38. V. Kariwalaa, P. E. Odiowei, Y. Cao and T. A. Chen: 
“Branch and Bound Method for Isolation of Faulty 
Variables through Missing Variable Analysis”; J. 
Proc. Cont. 20, 2010, p. 1198. 

39. J. E. Jackson: A User’s Guide to Principal Compo-
nents, Wiley, New York, 1991. 

40. R. W. Hopkins, P. Miller, R. E. Swanson and J. J. 
Scheible: “Method of Controlling a Manufacturing 
Process Using Multivariate Analysis”; US Patent 
5,442,562, 1995. 

41. A. K. Conlin, E. B. Martin and A. J. Morris: “Con-
fidence Limits for Contribution Plots”; J. 
Chemom., 2000, vol. 14, p. 725. 

42. Z. Sidak: “Rectangular Confidence Regions for the 
Means of Multivariate Normal Distribution”; J. 
Amer. Statis. Assoc., 1967, vol. 62, p. 626. □  

 


